IARJSET

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

Study on Reduction of PAPR of OFDM Signals

Marthy Siva Sai Krishna¹, Suhas Priyatham Manda², Yadavelly Sai Kiran Reddy³

Dept of ECE, GITAM University, and Hyderabad, India^{1,3}

Dept of ECE, Vasavi College of Engineering, Hyderabad, India²

Abstract: In this paper, we have presented a report on peak to average power ratio (PAPR) reduction based on a weighted OFDM signal scheme. This method is proposed to reduce the PAPR, without distortion of the original signal while removing the weights at the receiver side. In the proposed scheme, a weight is allocated on each discrete signal via a certain kind of a band pass signal through mixture, and an OFDM signal formed with the weighted discrete data is then considered before a high power amplifier where as the original signal can be recovered at the receiver side. Meanwhile the time duration needed to transmit weighted signal is the same as the time duration for the original OFDM signal. The effectiveness of the proposed scheme is evaluated with computer simulations.

Keywords: PAPR (Peak-to-Average Power Ratio), OFDM, SLM, FFT (fast Fourier transform).

I. INTRODUCTION

These Modern wireless communication systems are aimed based schemes. Major techniques with their pros and cons at providing extremely high-speed data transmission to are summarized as follows. Clipping and filtering is support high speed Internet, high quality multimedia and considered as the simplest PAPR reduction technique, high definition streaming videos, where orthogonal which limits the peak envelope of the input signal to a frequency division multiplexing (OFDM), a multicarrier predetermined level, transmission technique, has emerged as key technology to achieve high data rates and to increase system's reliability Otherwise passes the signal without change. Filtering the in harsh wireless channels. OFDM has been widely clipped signal helps to reduce out-of-band distortion but adopted in many wireless and wire line communication leads peak power regrowth. Various techniques to mitigate standards such as Third Generation Partnership Project the harmful effects of clipping and filtering have been (3GPP), Long-Term Evolution Advanced (LTEA), proposed but unable to maintain the error performance. Wireless Local Area Networks (WLANs, IEEE 802.11a Compounding transforms has low computational and IEEE 802.11g), Worldwide Interoperability for complexity and simple implementation but it comes with Microwave Access (WiMAX, IEEE 802.16), digital audio the price of increased error rate. In selective mapping broadcasting (DAB), digital video broadcasting (DVB), European HIPERLAN/2, and digital subscriber line (DSL). OFDM divides the data into several parallel and orthogonal streams or sub channels (called subcarriers) and each subcarrier (basically a sinusoidal signal) has constant amplitude, but when summing the subcarriers, the resulting OFDM signal fluctuates over a large range. For N subcarriers, the peak power can theoretically be N times larger than the average power.

The ratio between the peak power and the average power is referred to as peak-to-average power ratio (PAPR). The high PAPR requires transmitter's power amplifier with a large linear range capable of accommodating the signal, but practically power amplifier has a limited linear region beyond which it saturates to a maximum output level. Thus, such efficient schemes need to be investigated that can reduce the occurrence of large signal peaks at the input of the power amplifier in order to minimize the detrimental effects of nonlinear distortions without sacrificing the power efficiency. A number of approaches have been proposed in the literature to solve the PAPR problem, such as clipping and filtering, companding, tone reservation, tone injection, partial transmit sequences, selective mapping, constellation shaping, and coding

(SLM) technique, a set of adequate different OFDM symbols is generated, all representing the same information as the original OFDM symbol, then transmitted the one with the lowest PAPR. Information about the selected symbol is transmitted to the receiver as side information which reduces the data rate. Another disadvantage of SLM is high computational complexity due to the symbol selection process. In the partial transmit sequence (PTS) technique, an input data block of length N is partitioned into a number of disjoint sub-blocks and then weighted by a phase factor, which is selected to minimize the PAPR of the combined signal. PTS technique has similar disadvantages as that of SLM technique. In tone injection (TI) technique, the constellation size is increased so that each of the points in the original basic constellation is mapped into several other points in the expanded constellation, which helps to reduce PAPR but with increased power and complexity. In tone reservation (TR) technique, a subset of tones is reserved which carries no information data.

Orthogonal frequency division multiplexing (OFDM) is emerging technology for 4th generation (4G) cellular networks. OFDM is a parallel transmission scheme which splits high data rate serial data stream into low-rate sub

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

stream; each one is modulated on a separate SC. OFDM is one of the many multicarrier modulation techniques, provides high spectral efficiency, which implementation complexity, less vulnerability to echoes and non - linear distortion. Due to these advantages of the communications systems, however, can be found OFDM system, it is vastly used in various communication systems. But the major problem one faces while introduced, many countries in Europe already had fully implementing this system is the high peak – to – average operational nationwide data–networks in place. We briefly power ratio of this system.

A large PAPR increases the complexity of the analog-todigital and digital-to-analog converter and reduces the efficiency of the radio frequency power amplifier. Regulatory and application constraints can implemented to reduce the peak transmitted power which in turn reduces the range of multi carrier transmission. of message relaying and encoding had to be developed This leads to the prevention of spectral growth and the virtually on the spot. Or so it seems. transmitter power amplifier is no longer confined to linear region in which it should operate. This has a harmful It is clear that all these methods are limited in their effect on the battery lifetime. Thus in communication possible uses: they are all relatively crude broadcast system, it is observed that all the potential benefits of multi carrier transmission can be out - weighed by a high messages. It would be interesting to see, therefore, what PAPR value. .

Many PAPR reduction schemes based on different possible. For this, a number of enabling techniques had to techniques, such as clipping and filtering, window shaping, block coding, partial transmit sequence (PTS) technique, and selective mapping (SLM) technique, phase These include: optimization, tone reservation and injection and • Methods for relaying messages point to point, instead of constellation techniques have been discussed in literature. Specifically, constellation scheme can reduce PAPR more • Methods for encoding arbitrary information, e.g. in an effectively than the clipping approach to the original alphabet, or in a vocabulary that has been optimized for a signals.

Today, the data communications are more various. Each Assuming that we have some type of rudimentary communication needs a high data rate and an efficient signalling link, the problem of controlling that link itself bandwidth use. For the air media, this higher data rates also has to be solved. To be able to do this at all, one has should be balanced with the system ability to cope with to be able to make the distinction between control multipath fading. This need can be fulfil with the existence information and message data, even when both types of of Orthogonal Frequency Division Multiplexing (OFDM) technique. OFDM can handle multipath fading and use a bandwidth efficiently. OFDM is efficient in bandwidth use because its signal is orthogonal.

In OFDM technique, a bandwidth is divided into some • Distinctions being made between control information channel, each is called sub-channel. Each sub-channel is and message data, and independent each other and has one-carrier. In the time • Methods being developed for error control, flow control, domain, OFDM signals are a superposition of its sub and rate control. channels. Typically, each sub channel uses QAM modulation. The superposition of these sub channels makes the occurrence of PAPR phenomenon in the OFDM. The PAPR phenomenon is not applicable for the receiver amplifier.

OFDM signals have a strong relation with the chosen modulation mode. This paper will see how the 4-QAM and 16-QAM modulation mode affect the PAPR value. In Robustness against frequency selective fading and time addition, it will include the effect of the sub channels in dispersion. Transmission rates close to capacity can be producing PAPR value.

II. LITERATURE SURVEY

low It is usually assumed that data-networks are a 20th Century phenomenon. Evidence of efforts to build data throughout history. Before the electrical telegraph was recount the long history of pre-electric communication methods and devices.

Modern data communications techniques rely on many concepts and ideas that all seem to have evolved in a be relatively short span of time. When, in the mid 19th Century, the electrical Telegraph was introduced, a system

methods that cannot but give a small set of pre-defined historical record there is of methods and techniques that make point-to-point signalling of arbitrary messages be developed first.

broadcasting them.

particular type of signalling.

signals travel on the same link. Furthermore, explicit control procedures have to be formulated and agreed upon between the senders and receivers of a data link. It is interesting to see when we can find the first evidence of explicit:

III.PAPR IN OFDM

OFDM is a powerful modulation technique being used in many new and emerging broadband communication systems.

-Advantages:

achieved. Low computational complexity implementation.

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

-Drawbacks:

Sensitivity to frequency offset. Sensitivity to nonlinear amplification. Compensation techniques for nonlinear effects, Linearization (digital predistortion).Peak-toaverage power ratio (PAPR) reduction. Post-processing.

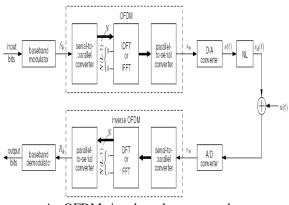
PAPR-reduction techniques:

Varying PAPR-reduction capabilities, power, distributed in decibels bandwidth and complexity requirements.

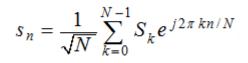
The performance of a system employing these PAPR is mathematically defined as: techniques has not been fully analyzed

PAPR is a very well known measure of the envelope fluctuations of a MC signal

Used as figure of merit.

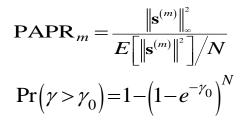

The problem of reducing the envelope fluctuations has turned to reducing PAPR.

In this paper we present a quantitative study of PAPR and NL distortion


simulate an OFDM-system employing some of these techniques

Motivation: evaluate the performance improvement capabilities of PAPR-reducing methods.

Orthogonal Frequency Division Multiplexing


An OFDM signal can be expressed as

Peak-to-average power ratio

Let be the m-th OFDM symbol, then its PAPR is defined as

The CCDF of the PAPR of a non-oversampled OFDM signal is

CCDF of PAPR increases with the number of subcarriers in the OFDM system. It is widely believed that the more subcarriers are used in a OFDM system, the worse the distortion caused by the nonlinearity will be. In-band and out-of-band distortion If N is large enough, the OFDM signal can be approximated as a complex Gaussian distributed random variable. Thus its envelope is Rayleigh

$$PAPR = 10\log_{10} \frac{\max[|x(t)|^2]}{\frac{1}{T} \int_0^T |x(t)|^2 dt}$$

Reduction Techniques

Two categories of the PAPR reduction methods can be classified: the first kind is distortion less and the second one is distorted. The distortion less methods will not distort the original OFDM waveform. However, these methods have to transmit the additional side information (SI) along with the OFDM signal.

Hence, the distortion less methods has the disadvantage of reducing the system throughput. On the contrary, the distorted methods will not reduce the throughput. However, they are nonlinear and suffer the bit error rate (BER) degradation of the system.

Signal Scrambling Techniques

- Block Coding Techniques
- · Block Coding Scheme with Error Correction
- Selected Mapping (SLM)
- Partial Transmit Sequence (PTS)
- Interleaving Technique
- Tone Reservation (TR)
- Tone Injection (TI)

Signal Distortion Techniques

- · Peak Windowing
- Envelope Scaling

· Peak Reduction Carrier, Clipping and Filtering

IV. WEIGHTED OFDM SYSTEM WITH MODIFIED WEIGHT

The demerit of the weighted OFDM signal is the degradation of BER performance since the weight ϕ is nonuniform. To overcome this let us consider the modified weight with a positive constant α as follows:

$$\varphi_{\alpha}(x) = \varphi(x) + \alpha / \log N$$

Where α is a shift parameter, and logN is obtained by experiment. Then, $\phi = \phi 0$. In the weighted OFDM signal in (11), we replace weight ϕ with $\phi \alpha$ for a suitable positive constant to get the weighted OFDM signal, i.e.,

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

$$z_N(t) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} a_k \varphi_\alpha(2\pi f_k) e^{j2\pi f_k t},$$

as a transmitted signal instead of xNin (1).n system (13), weight $\phi\alpha(2\pi fk)$ is imposed on the discrete dataak, k=0,...,N-1, and we form an OFDM signal with the weighted discrete data{ak $\phi\alpha(2\pi fk)$ } N-1 k=0 to get weighted OFDM signal zN.

We transmit weighted OFDM signalzNfor the same time duration [0,NT]as the original OFDM signal.

We note that weight ϕ is positive on the real line; therefore, the modified weight $\phi \alpha$ is positive on the real line. Since $\phi \alpha (2\pi fk)=0$ for

anyk=0,...,N-1, the discrete data{ak} N-1 k=0

The PAPR of weighted OFDM is given by can be completely recovered.

$$PAPR(z_N) = \frac{\max_{0 \le t \le NT} |z_N(t)|^2}{E\left(|z_N(t)|^2\right)}$$

We note that a sufficient condition for a signal ϕ to be a proper weight is that $\phi(2\pi fk)=0$ for any k=0,...,N-1. We expect that the performance of the weighted OFDM system corresponding to ϕ depends on the smoothness of the Fourier transform of ϕ .

V. SIMULATION RESULTS USING MATLAB

The performance of this proposed scheme is analysed through the simulations. In the simulations, 10 3 quadratic-phase-shift-keying (QPSK)-modulated OFDM symbols were randomly generated. Fig. 2 shows the CCDFs of the C&F method and the proposed method for N=128,256,512. The proposed method is simulated with a fixed shift parameter alpha=0.03, and several C&Fs are simulated with various clipping ratios CR=0.8, 1.2, 1.6, respectively.

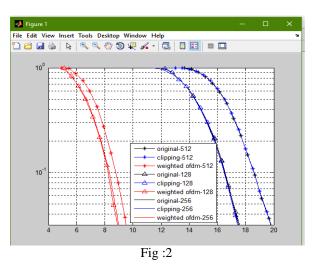

As shown in the figure, the proposed scheme can reduce the PAPR around 3 dB for N=128 and 2 dB for N=512, respectively, at the 1% of the CCDF, compared with the C&F scheme. Note that the PAPR of the original OFDM signal exceeds 14.8 dB for N=128 and 16 dB for N=512, respectively. In Figs. 2 and 3, since the results induced by quadratic-amplitude modulation mapping are almost the same as those induced by QPSK mapping, here, we provide only the results induced by QPSK mapping.

Fig. 3 compares the C&F method with the proposed method for CCDFs and BER performance over the additive White Gaussian noise channel together. As shown in the figure, the BER performance and the CCDF of the proposed method with α =0.15 are superior to those of the C&F method for CR=0.8,1.2,1.6 when N=128 is fixed.

Output Waveforms:

VI. CONCLUSION

A PAPR reduction scheme based on a weighted OFDM signal has been proposed to reduce the PAPR without data distortion in removing the weight at the receiver side in the mathematical view. To reduce the peak of the OFDM signal, a band limited signal ϕ , which is not zero on the set{ $2\pi fk$ } N-1 k=0, is introduced, and we form weight $\phi\alpha=\phi+\alpha/\log N$ for a suitable positive constant α .

We consider a weighted discrete data to form a weighted OFDM signal, which is defined on the same time interval as the original OFDM signal, before the HPA, where the weights are imposed by using signal defined. It is shown that the PAPR of this weighted OFDM method is smaller than that of the C&F method, and the BER performance is improved compared with the C&F method. The schemes for reducing the peak-to-average-power-ratio are seen, few schemes also help in reducing the bit error rate though not to the required extent. The weighted OFDM scheme helps in achieving the goal of obtaining lesser peak-to-averagepower-ratio as well as bit error rate. Yet to achieve the ideal case new methods are to be found which reduces the bit error rate and peak-to-average-power-ratio.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

REFERENCES

- Chang Eon Shing, Kyung Soo Rim, and Young Kim,"A Weighted OFDM Scheme for PAPR reduction of OFDM signals",IEEE transactions on vehicular technology,vol-62,no.3,march 2013
- [2] X. Li and L. J. Cimini, Jr., "Effects of clipping and filtering on the performance of OFDM,"IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133, May 1998.
- [3] J. Armstrong, "Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,"Electron. Lett., vol. 38, no. 5, pp. 246–247, Feb. 2002.
- [4] Y.-C. Wang and Z.-Q.Luo, "Optimized iterative clipping and filtering for PAPR reduction of OFDM signals,"IEEE Trans. Commun., vol. 59, no. 1, pp. 33–37, Jan. 2011.
- [5] X. Li and J. A. Ritcey, "M-sequences for OFDM peak-to-average power ratio reduction and error correction," Electron. Lett., vol. 33, no. 7, pp. 554–555, Mar. 1997.
- [6] V. Tarokh and H. Jafarkhani, "On the computation and reduction of the peak-to-average power ratio in multicarrier communications," IEEE Trans. Commun., vol. 48, no. 1, pp. 37–44, Jan. 2000.
- [7] J. A. Davis and J. Jedwab, "Peak-to-mean power control in OFDM, Golay complementary sequences, and reed-mullercodes,"IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2397–2417, Nov. 1999.
 [8] K. G. Paterson and V. Tarokh, "On the existence and construction
- [8] K. G. Paterson and V. Tarokh, "On the existence and construction of good codes with low peak-to-average power ratios,"IEEE Trans. Inf. Theory, vol. 46, no. 6, pp. 1974–1987, Sep. 2000.
- [9] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, "Reducing the peakto-average power ratio of multicarrier modulation by selected mapping," Electron.Lett., vol. 32, no. 22, pp. 2056–2057, Oct. 1996.
- [10] S. H. Muller and H. B. Huber, "OFDM with reduced peak-to-mean power ratio by optimum combination of partial transmit sequences," Electron. Lett., vol. 33, no. 5, pp. 368–369, Feb. 1997.
- [11] A. D. S. Jayalath and C. Tellambura, "Reducing the peak-toaverage power ratio of orthogonal frequency division multiplexing signal through bit or symbol interleaving,"Electron. Lett., vol. 36, no. 13, pp. 1161–1163, Jun. 2000.

BIOGRAPHIES

Marthy Siva Sai Krishna, a graduate from GITAM University and have an interest in Signal processing and communications.

Yadavelly Sai Kiran Reddy, a graduate from GITAM University and have an interest in Data science and artificial intelligence.

Suhas Priyatham Manda, a graduate from vasavi College of Engineering and have an interest in Signal processing and communications.